
The views expressed in this article are those of the authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the US Government

Approved for public release; distribution unlimited.

IaDEA: A Development Environment
Architecture for Building Generic
Intelligent User Interface Agents

Proceedings of the AAAI-98 Workshop on Software Tools for Developing
Agents
Madison, Wisconsin USA, 26-27 July 1998

Scott M. Brown, Eugene Santos Jr., Sheila B. Banks, and Martin R. Stytz

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765

IaDEA: A Development Environment Architecture for Building
Generic Intelligent User Interface Agents

Scott M. Brown
yDepartment of Electrical and Computer Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433{7765 USA

fsbrown,sbanks,mstytzg@a�t.af.mil

Eugene Santos Jr.
Computer Science and Engineering

University of Connecticut
Storrs, CT 06269{3155 USA
eugene@eng2.uconn.edu

Sheila B. Banksy and Martin R. Stytzy

Abstract

The need exists in the work force for generic intelli-
gent user interface agents to address the problem of in-
creasing taskload that is overwhelming the human user.
Interface agents could help alleviate user taskload by
providing abstractions and intelligent assistance in a
self-contained software agent that communicates with
the user through the existing user interface and also
adapts to user needs and behaviors. The bene�ts of a
generic intelligent user interface agent environment is
it can be applied to any highly interactive and informa-
tion intensive software system from freight and parcel
management systems to Wall Street �nancial invest-
ment and analysis.

We desire to address the two following di�culties with
developing interface agents: (1) The extensive number
of existing computer systems makes it impractical to
build these agents by hand for each system; (2) Any
such agent must be compliant with existing user inter-
face standards and business practices (e.g., the United
States Air Force's Common Operating Environment
(COE) standards as de�ned by the Defense Informa-
tion Infrastructure (DII)). Thus, an environment for
constructing intelligent interface agents that facilitates
standards compliance is necessary.

We investigate the feasibility of developing an inte-
grated environment for constructing generic intelligent
user interface agents. We base our proposed design
on three components: (1) a knowledge acquisition tool
for support of speci�cation and design of interface
agents taking in to account compliance with existing
computer-based systems and user interface standards;
(2) a utility theory-based methodology for interface
agent requirements, assistance, and adaptivity; and (3)
a correction model for user adaptivity based on user
metrics evaluation.

Keywords: intelligent user interfaces, agent devel-
opment environments, user adaptive interfaces

Introduction

As computer-based technology continues to progress
and the increase of information-based paradigms in
modern work force operations continues, solutions for
these operationsmust be capable of delivering increased

amounts of information for the human user. Unfor-
tunately, as the amount of information increases, the
user's task to process this information has become
overwhelming. Furthermore, for human operators to
just simply use the interface to these highly complex
computer systems currently requires highly specialized
training and education that is both lengthy and costly
to businesses.
The need exists for systems that can help solve this

problem by providing abstractions and intelligent assis-
tance in a self-contained software agent that communi-
cates with the user through the user interface. Since
each user operates in a di�erent fashion, processing in-
formation in their own way, a complete intelligent in-
terface agent must be capable of adapting to user needs
and behaviors.
We desire to address the two following di�culties

with developing interface agents: (1) The extensive
number of existing computer systems makes it imprac-
tical to build these agents from scratch for each system;
(2) The agent must be compliant with existing user in-
terface standards and business practices. Thus, an en-
vironment for constructing intelligent interface agents
that satis�es standards compliance is necessary.

Prior Related Work in Agent

Development Environments

We describe several existing related projects for devel-
oping adaptive intelligent user interfaces. The need for
development tools to aid designers in the speci�cation
and design of agent-based systems is critical. However,
agent development environments are still relatively im-
mature. Although each is similar to the approach we
present here with respect to at least one area of our
approach, none present the overall approach we use.
Several commercial and research projects attempted

to address the problem of agent development (Cohen
et al. 1994; Martin, Cheyer, & Lee 1996; Barbuceanu
& Fox 1996; IBM 1997; Microsoft 1997). Essentially,
all the projects provide a visual development environ-
ment, with associated methods specifying agent \be-
haviors" via an agent communication language. Most

provide a simple syntactic check on the agent's spec-
i�cation. The commercial tools focus mainly on the
communication aspects of agent development and, like
human-computer interaction researchers, the presenta-
tion of the agent to the user. This presentation has,
to date, been in the form of anthropomorphized agents,
complete with \faces" and \voices." We discuss the
two most promising research environments for interface
agent development. As will be discussed later, the agent
development environment problem is still an active re-
search area.

Open Agent Architecture

The goal of the Open Agent Architecture project (Co-
hen et al. 1994; Martin, Cheyer, & Lee 1996) is to
develop an open agent architecture and accompany-
ing user interface for networked desktop and hand-
held machines. Their system supports multiple agents
for distribution of users' tasks and interoperability be-
tween application subsystems. To that end, their agent
building environment tool allows users to generate code
\stubs" for several popular programming languages.
Their system includes two other tools | the Linguistic
Expertise Acquisition Program (LEAP), for interfac-
ing a new agent with existing linguistic support agents
such as natural language parsers and speech recognition
systems, and PROJECT, for creating and maintaining
repositories of reusable agents.
The Open Agent Architecture's tools allow design-

ers to specifying the agents' interfaces in an extension
of Prolog. Agents de�ne their capabilities (called solv-

ables) and inform a facilitator agent of those capabili-
ties. The facilitator is responsible for delegating tasks
based on the capabilities. The use of a Prolog-like
agent communication language allows the facilitator to
reason over the capabilities of the agents, i.e., deter-
mine if its invocation conditions are true and what the
needed parameters for invocation are. This reasoning is
only about the agent's explicitly de�ned interface, and
does not consider its internal capabilities. This lim-
itation precludes the possibility of user-modeling and
user-intent prediction in any agent developed by this
environment.

Agent Building Shell

Barbuceanu, et al. (Barbuceanu & Fox 1996) address
issues related to actual programming constructs for in-
ternal representation and reasoning of agents and the
development of tools to support how an agent repre-
sents its \view" of the world, to include updating this
representation based on interaction within the environ-
ment. The Agent Building Shell (ABS) (Barbuceanu &
Fox 1996) contribution to the �eld of agent development
environments is the attention given to an agent's inter-
nal knowledge representation and reasoning about the
environment. The authors use rule-based descriptions,
called conversation plans, of agent actions in a given
situation. A conversation plan speci�es the available

conversation rules, their control mechanism and the lo-
cal data-base that maintains the current state of the
conversation. Conversations can be represented graph-
ically with �nite state automata. Error recovery rules
can be speci�ed to deal with incompatibilities among
the current state and incoming messages and are in-
voked when a conversation rule cannot handle the cur-
rent situation. Rules are speci�ed with a coordination
language. The authors assume a deterministic environ-
ment. For their environment, this assumption is reason-
able. However, for interface agent development, where
the domain (including the user's behavior within the
domain) is anything but deterministic, we must chose
knowledge representations capable of representing un-
certainty. ABS rules must also be speci�ed by the user.

Interface Agent Development

Environment Architecture

The main problem with existing agent building envi-
ronments is they fail to be more than non-agent code
development tools with a means of specifying a com-
munication protocol. Most environments focus on the
communication aspect and distribution of a task to mul-
tiple agents. Although one strength of agents is the
ability to distribute tasks to specialized agents for han-
dling those tasks (e.g., e-mail agents, calendar agents,
information retrieval agents), focusing just on the com-
munication aspects ignores other aspects of agent spec-
i�cation and development such as adaptivity and ro-
bustness. All systems described here su�er from the
same weaknesses | lack of environment speci�cation,
adaptivity mechanisms, and agent knowledge represen-
tation and reasoning mechanisms. Additionally, these
systems do not adequately deal with human-agent inter-
action. The underlying di�erence between agent-based
and software engineering is the dynamics of the envi-
ronment in which the agents must \perform," to include
the dynamic needs of the user. We must address these
issues explicitly within our developmentmethods, tools,
principles, etc.
To address the concern that agent development en-

vironments are little more than software engineering
tools, we identify the following three areas where agent
development environments have been de�cient.
Environment Speci�cation. Existing environ-

ments implicitly address the environment where an
agent must perform. An explicit representation of the
environment can bring to the fore-front critical domain
considerations and enable the designer to identify those
domain environment features (e.g., stimuli, a�ectors
and human-factor considerations) with which the in-
terface agent must deal. Since we are concerned solely
with interface agents, we also desire to specify user be-
havior within the environment. The use of an explicit
speci�cation of the domain environment for agent-based
development is a technique used in software engineer-
ing (Rumbaugh et al. 1991).
Adaptivity Mechanisms. None of the current en-

vironments explicitly address the fact that agents typ-
ically operate in dynamic environments and, therefore,
must be capable of adaptive behavior. While adaptivity
requirements can be addressed at the code level, they
are better addressed at the speci�cation level, where we
can determine what to adapt, how to adapt it, when to
adapt it, and why.
Agent Knowledge Base and Reasoning Mech-

anisms. All but IBM's Agent Building Environment
and the Agent Building Shell fail to provide a persis-
tent knowledge base and underlying reasoning mecha-
nism for agents to reason about their environment via
sensing, acting, and reacting. The other systemsmerely
provide a way for the agent to react to an explicit activa-
tion; Autonomous agent behavior, where the agent can
reason about the actions of the user in an attempt to
autonomously act on the user's behalf, is not addressed.
IBM's solution is to provide sensing \adapters" and
simple if-then rules to control the overall actions of the
agent. Agents perform their task(s) if the antecedent of
their \activation" rule is satis�ed. The knowledge base
is stored in a library for use by all agent(s).
Current agent development environments typically

focus on collaboratitive, autonomous multi-agent sys-
tem speci�cation and development (more the former
than the latter). However, they tend to ignore the fact
that many agents, in particular interface agents, need
the ability to adapt to the changing needs of the user
and environment. Furthermore, as we mentioned ear-
lier, we wish to develop generic intelligent user interface
agents usable in many di�erent domains. Generic inter-
face agent development requires a robustness not found
in other development environments. We address these
issues explicitly within our proposed agent development
architecture, the Intelligent Agent Development Envi-
ronment Architecture (IaDEA) as depicted in the �gure
below.
A number of the components of our architecture

have already been completed. In particular, the Core
Interface Agent Architecture (CIaA) and associated
adaptivity requirements metrics are complete and we
have reported on them elsewhere (Brown et al. 1998;
Brown, Santos Jr., & Banks 1998). The target system
application programmers' interface (API) and the inter-
face standards are determined a priori by the existing
system. The main component of IaDEA yet to be im-
plemented is the ASLAN environment. We discuss our
proposal for ASLAN next.

Agent Speci�cation Language Environment

To address the short-comings of current agent develop-
ment environments, we propose the Agent Speci�cation
LANguage (ASLAN) environment. To one degree, our
proposal supports our existing Core Interface Agent Ar-
chitecture (CIaA) and enables developers to easily per-
form the needed initial knowledge acquisition for CIaA.
To another degree, our proposal extends, where possi-
ble, existing methods and tools to expand their capa-
bilities and coverage of agent speci�cation and design

issues. In some areas, we propose adding new function-
ality, in others, we merely propose extending existing
functionality to account for adaptive interface agents.
ASLAN will be capable of incorporating user interface
standards (e.g., the Defense Information Infrastructure
standards for a CommonOperating Environment) as an
independent module that automatically drives agent in-
terface developments. This methodology allows for au-
tomatic and \hands-free" updating of ASLAN as user
interface standards themselves are updated and change.

We propose to use the Knowledge Query and Manip-
ulation Language (KQML) (May�eld, Labrou, & Finin
1996) and Ontolingua (Gruber 1993) with a knowledge
acquisition tool front-end. KQML is both a message
format and message-handling protocol, supporting run-
time sharing of knowledge between heterogenous (and
homogeneous) agents. KQML is emerging as a standard
within the agent community and there exists a number
of tools (to include application programming interfaces,
or APIs) to support KQML integration into an agent
development environment and implementation.

Ontolingua is a language for representing ontologies.
An ontology is a speci�cation of a representational vo-
cabulary for a shared domain of discourse | de�nitions
of classes, relations, functions, and other objects. In
relationship to agent research, ontologies describe the
concepts and relationships that can exist for an agent or
a community of agents. Gruber (Gruber 1993) uses on-
tologies for the purpose of enabling knowledge sharing
and reuse between agents. An ontological commitment
is an agreement (by the agent) to use a vocabulary (i.e.,
ask queries and make assertions) in a way that is consis-
tent with respect to the theory speci�ed by an ontology.
While Ontolingua is good for representing and sharing
knowledge, it is poor for acquiring that knowledge due
to its notation and the inherent complexity of design-
ing ontologies. We therefore propose to \shield" the
designer from Ontolingua by providing the ASLAN en-
vironment tool. Knowledge acquired via the tool can
then be encoded into a KQML application program-
ming interface using KQML's performatives and On-
tolingua's content format for sharability with the agent
research community at large and use within an interface
agent-based system.

Addressing Agent Development Environment
De�ciencies Figure 1 shows that an agent speci�ca-
tion language may be derived for a given software sys-
tem from user interface standards, the target systems
application program interface (API), and speci�cations
required by the human interface developer. We now
describe how the ASLAN environment can be used to
address the above three de�ciencies of existing environ-
ments.

IaDEA Environment Speci�cation. To specify
our environment, we must specify what events we ex-
pect from the user interface, i.e., the stimuli the user
interface can provide to the agent. For example, the
interface agent needs to be able to determine when a

Figure 1. Proposed Interface Agent Development Environment Architecture (IaDEA): High-level process
ow for construction of customized intelligent user interfaces.

button is pressed, a menu item is selected, the user ex-
its the system, etc. Additionally, the agent must know
how it can a�ect the environment it is in, i.e., the a�ec-
tors. These a�ectors can either be de�ned by the tar-
get system's API or we can assume that the designer of
the agent will have direct access to the target system's
source code. ASLAN can be used to elicit an explicit
enumeration of the \call-backs" the agent can use as
input from and output to the application. This enu-
meration is su�cient to capture the application speci�c
stimuli and a�ectors.

Interface agent developmentmust explicitly deal with
one component other agent systems possibly ignore |
the human agent. Human users have beliefs, desires,
and intentions, abilities, preferences, emotions, plans,
and goals. To o�er bene�cial assistance to the user, we
must be able to capture these characteristics. Further-
more, the environment the interface agent and human
user are situated in has a direct impact on the user's
behaviors as well as the environment being a�ected by
these two agents. This interaction between environ-
ment, user, and interface agent must be captured.

User modeling is concerned with how to represent
users' knowledge and interaction within a system to
adapt the system to the needs of users. Prolifera-

tion of user modeling as a means of accurately cap-
turing the beliefs, abilities, and intent of users is ap-
parent. Researchers from the �elds of arti�cial intelli-
gence, human-computer interaction, psychology, educa-
tion, and others have all investigated ways to construct,
maintain, and exploit user models.

Vassileva feels we need to start using lessons learned
from user modeling to impact the way we view inter-
active human-computer environments (Vassileva 1997).
She discusses viewing these environments along three
orthogonal dimensions: elements | the goals, plans,
resources, and actions composing the atomic entities
an agent (human or otherwise) is concerned with, pro-
cesses | the types of processing (e.g., reaction, decid-
ing, learning) that takes place in an agent, and relation-
ships | the way agents interact with one another. Her
approach makes explicit reasoning about the purpose
of adaptations, treats human and computer agents the
same in the environment, takes into account user mo-
tivation, emotions, and moods, and presents a uni�ed
model of collaborative, cooperative, and adverse behav-
ior.

The ability to accurately capture user characteristics
and completely address Vassileva's viewpoints on inter-
active human-computer environments is di�cult. For

example, there is typically not a speci�c user action
within the environment that determines a certain user
characteristic (e.g., intentions). However, several tech-
niques from the user model research �eld are applicable,
e.g., user pro�les and stereotypes.
User pro�les can be used to represent background,

interests, and general knowledge about a user that is
typically static. User pro�les may be elicited from users
by, for example, standardized tests, surveys, and/or as-
sessments. These elicitation techniques are used to con-
struct the user pro�le. For example, Csinger et al. use
a simple form-�lling operation to elicit interest metrics
for \intent-based" authoring (Csinger & Poole 1996;
Csinger, Booth, & Poole 1994). Van Veldhuizen et

al., use a \skills vector" to de�ne an agent's ability
to perform certain tasks, measured by standardized
scores (Van Veldhuizen, Lamont, & Santos Jr. 1998).
Additionally, some researchers are investigating ways
to incorporate human factors into user models (Mul-
gund & Zacharias 1996; Sch�afer & Weyrath 1997;
Stefanuk 1997; Gavrilova & Voinov 1997).
Furthermore, we can elicit various stereotypical user

models (Rich 1983). Stereotypes represent \typical"
users, representing various traits, characteristics, and
attributes that often co-occur in people. Users clas-
sify themselves as belonging to a particular stereotype.
User modeling researchers, as well as other research
disciplines, have used stereotypes and pro�les for vari-
ous purposes (Kay 1994). User modeling examples in-
clude using stereotypes to �lter World Wide Web doc-
uments (HTML/text), basing a user's inferred interests
on user adapted stereotypes acquired via experts (Am-
brosini, Cirillo, & Micarelli 1997), deriving initial pro�-
ciency estimates on a user's level of advancement for
use in computer-assisted language learning (Murphy
& McTear 1997), and adapting Web-based hyperme-
dia based on stereotypical users' abilities (e.g., disabled
and the elderly) (Fink, Kobsa, & Nill 1997). We feel the
work presented here and in previous separate work has
begun addressing many of Vassileva's concerns (Brown,
Santos Jr., & Banks 1998).
In particular, we are interested in capturing the user's

intent. Representing the user's intent within the envi-
ronment is paramount if the interface agent is to predict
this intent and therefore o�er assistance to the user.
Benyon and Murray state \failure to recognize the in-
tentions underlying some user action will result in less
satisfactory interaction" as a result of failing to recog-
nize the pursuit of one goal versus another (Benyon &
Murray 1993). Brown, Santos Jr., and Banks (1998)
state that an approach to predicting user intent is to
identify the salient characteristics of the domain envi-
ronment and speci�cally determine goals a user is trying
to achieve. This approach is based on the belief that
what a user intends to do in an environment is the result
of environmental events and the goals they are trying
to achieve via reaction to stimuli. Therefore, there is a
causal relationship between environmental stimuli, hu-
man factors, users' goals, and the actions users perform.

As a �rst step towards modeling user characteris-
tics applicable to the user, the ASLAN environment
can function as a knowledge acquisition front-end to
Ontoligua to specify both a user pro�le for a speci�c
user and user stereotypes for classes of users. Any of
the aforementioned techniques for specifying user pro-
�les and stereotypes is suitable for use within IaDEA.
With regards to specifying user intent, since we contend
there exists a causal relationship between environmen-
tal stimuli, human factors, users' goals, and the actions
users perform, ASLAN can use a directed acyclic graph
to show this causality. Furthermore, since ascribing
user intent is inherently uncertain, we can assign prob-
abilities to the arcs in the directed graph. We have used
this approach in previous research (Brown, Santos Jr.,
& Banks 1998).
IaDEA Adaptivity Mechanisms. As previously

mentioned, a key distinguishing factor between software
and agent-based engineering is that agent-based engi-
neering deals with dynamic environments. However, as
is evident from the existing agent development envi-
ronments, adaptivity to dynamic environments is not
often explicitly considered. We desire to bring the re-
quirement of adaptivity to the forefront of agent speci-
�cation and design, guiding the designer to areas in the
design where adaptivity is warranted. We discuss our
incorporation of adaptivity mechanisms into IaDEA in
the next section.
IaDEA Agent Knowledge Base and Reason-

ing Mechanisms. Since the ASLAN environment uses
Ontolingua, and since Ontolingua is not meant as a
representation language for reasoning, we should, for
e�ciency's sake, choose a di�erent knowledge represen-
tation for reasoning. The ontology de�nes an adap-
tive intelligent agent, its environment (a user interface),
and the user's goals and associated actions to achieve
those goals within that environment. Since our knowl-
edge base is probabilistic, we need a representation that
can handle probabilistic reasoning. Additionally, as we
mentioned previously, a causal relationship exists be-
tween environmental stimuli, users' goals, and actions.
This causality can be used to construct Bayesian net-
works (Pearl 1988) based on the observable events and
goals within the environment (Jameson 1995). Bayesian
networks provide a mathematically correct and seman-
tically sound model for representing uncertainty that
provides a means to show probabilistic relationships be-
tween random variables | in this case goals, actions,
pre- and post-conditions.

Core Interface Agent Architecture

With input/output user interface standards and re-
quirements | such as DII-COE compliance and those
imposed by the particular software system we are con-
structing the interface for | fully speci�ed in the
ASLAN environment, we can separate out surface is-
sues from the core issue of how such an interface agent
should perform. In particular, we propose in this sec-
tion what an intelligent interface agent architecture

should be and how it should function.
We proceed to give a short presentation of the Core

Interface Agent Architecture (CIaA) to describe its in-
terdependency with ASLAN. Each component of CIaA
is de�ned in detail elsewhere (Brown et al. 1998;
Brown, Santos Jr., & Banks 1998). Figure 2 gives us an
overview of CIaA including user intent prediction and
continual adaptivity. We delegate the task of ascribing
user intent to the interface agent component of the ar-
chitecture, while continual adaptation of the interface
agent's user model is a task shared by the interface and
and a collection of correction adaptation agents.
Figure 3 shows the architecture of the interface agent

and the correction adaptation agents. The content of
the KQML messages is speci�ed via ASLAN. Each tar-
get system observation (environmental stimuli, user ac-
tion (as interpretted via the user interface of the target
system), and human factor) can be communicated to
the agents via the KQML message passing API. Every
observation is stored by the agents' evaluator in a his-
tory stack (i.e., most recent observation is on the top
of the stack). These observations can be used by the
agents as evidence into the user model, represented as a
Bayesian network. The interface agent o�ers assistance
via suggestions to the target system (user) by calcu-
lating the expected utility of o�ering assistance for a
goal, EU(�G). EU(�G) is calculated by performing
Bayesian network belief updating on the goal random
variable and the utility of suggesting the actions used
to achieve the goal, U(G; a;�).
There are three underlying methodologies utilized

in CIaA. These methodologies are a utility theory-
based approach, requirements metrics, and our correc-
tion model and associated correction adaptation agents.
In the remainder of this section, we de�ne the utility
theory-based approach, requirements metrics, and the
correction model.

Development of a Utility Theory-Based Ap-
proach for Interface Agent Assistance As we
have previously mentioned, ASLAN takes into account
the salient characteristics of the domain environment
and goals a user is trying to achieve. As Brown, Santos
Jr., and Banks (1998) state, there are several advan-
tages to representing users' intentions via goals, such
as the following:
� Goal abstraction allows us to design and detect
higher level goals, in pursuit of lower level goals.

� Evidence can be easily and intuitively added and re-
moved (in the form of pre- and post-conditions) as a
user interacts with the system.

� Pre- and post-conditions for goals and actions are
explicitly stated.

� Keyhole plan recognition1 is made easier by explic-

1Plan recognition is the task of ascribing intentions about
plans to an agent (human or software), based on observation
of the agent's actions. With heyhole plan recognition, the
agent is unaware of or indi�erent to the plan recognition
process.

itly enumerating atomic actions composing goals (Al-
brecht et al. 1997; Waern 1996).

� Natural language explanations of actions based on
prediction of goals can be easily generated.

As Figure 3 shows, CIaA uses a Bayesian network as
the underlying knowledge representation for the user
model. Bayesian networks' sound mathematical ba-
sis in probability theory makes them ideal to repre-
sent the uncertainty found in trying to predict a user's
intent. It should be noted that knowing the proba-
bility a user is pursuing a goal is important, but for
an interface agent to be truly useful, we must con-
cern ourselves with the utility of o�ering assistance to
the user. This approach has been used to good a�ect
by several researchers (Horvitz & Barry 1995; Kara-
giannidis, Koumpis, & Stephanidis 1996; Horvitz 1997;
Brown, Santos Jr., & Banks 1998). We can determine
the expected utility of o�ering assistance for a goal,
based not only on the probability of an action as deter-
mined by performing belief updating of the Bayesian
network, but on the utility of performing the action
given the user is pursuing the goal.
The general idea is that the interface agent suggests

the goal with the greatest expected utility. Utility the-
ory, using Bayesian techniques for assessing the prob-
abilities, is a non-ad hoc approach for predicting user
intent. The utility function can take into account rele-
vancy of the goal with respect to any number of metrics
and/or discriminators in the environment, including hu-
man factors identi�ed by ASLAN. These metrics tell us
what is important, explicitly enumerating those factors
that impact the utility of choosing the goal. Details re-
lated to the construction of the Bayesian network and
associated utility functions can be found in Brown et

al. (Brown, Santos Jr., & Banks 1998).

Requirements Metrics and Utiltiy Function We
believe it is absolutely essential to develop concrete,
measurable requirements for the interface agent. These
requirements measure the interface agent's e�ectiveness
in meeting the needs of the user. Without these require-
ments, any adaptations we make to the user model (via
our adaptivity mechanisms) are nothing more than a ad
hoc, quixotic attempt to improve the interface agent's
ability to provide bene�cial assistance. Put another
way: if we don't know where we are going, how will we
know when we get there?
We believe it is a necessity to �rst develop concrete,

measurable requirements and then use these metrics to
determine the e�ectiveness of an interface agent within
an environment. We believe the following interface
agent requirements are necessary (but possibly not suf-
�cient):

� adaptivity | the ability to modify an internal rep-
resentation of the environment through sensing of the
environment to change future sensing, acting, and re-
acting for the purpose of determining user intent and
improving assistance

� autonomy| the ability to sense, act, and react over

Figure 2. Core Interface Agent Architecture (CIaA): Process ow diagram for user intent prediction and
continual adaptation of an intelligent user interface agent.

time within an environment without direct interven-
tion

� collaboration | the ability to communicate with
other agents, including the user, to pursue the goal
of o�ering assistance to the user

� robustness | the ability to degrade assistance
gracefully.
We have developed an associated set of requirement

metrics to measure the e�ectiveness of the interface
agent in meeting these requirements. Details on the re-
quirement metrics set may be found elsewhere (Brown
et al. 1998).
Using the aforementioned requirements metrics, we

can de�ne a requirements utility function that deter-
mines the interface agent's utility of meeting the re-
quirements. The utility function Urequirements is de-
�ned for the requirement metrics of the agent, weighted
with respect to their importance, based on some previ-
ous history. That is,

Urequirements : !
n �Rn �H 7! <; (1)

where for each history h 2 H of previous actions and
events, ! 2 [0; 1] is a weighting factor for each of the
n requirement metrics R, and the utility function maps
to a real number. The higher the value of the utility
of our interface agent, the more \successful" it is in
meeting its requirements. This utility function allows
us to identify which requirements are not being met
and attempt to correct the problem by altering the user

model. We can readily use ASLAN to present these
metrics to the designer and allow the designer to chose
which metrics are appropriate and also determine the
relative importance of the metrics with respects to one
another, thereby determining the value of each !i.

Correction Models and Adaptation Agents Us-
ing the ASLAN environment, an interface designer
speci�es the salient characteristics of the environment.
This speci�cation, along with the target system API
and any applicable user interface standards are used to
generate the Core Interface Agent Architecture. How-
ever, due to the inherent dynamics of complex systems
and the uncertainty in accurately representing user in-
tent, our agent must be capable of adapting over time.
This adaptation allows the interface agent to maintain
an accurate user model.

Using the aforementioned requirements metrics and
requirements utility function, the utility of the user
model can be measured to determine how closely the
user model is to the real (exhibited) behavior of the
user. Since the user's behavior may change over time,
deviating from the original user model speci�ed via the
ASLAN environment (assuming we accurately captured
the user's model initially), any adaptation techniques
must be used over time to make sure the user model
reects the user's behavior.

This proposed approach is implemented as a multi-
agent system for adaptation of the interface agent's user

Figure 3. Interface Agent and Correction Adaptation Agent Architecture.

model (Brown et al. 1998). See Figure 2 and Figure 3.
The approach to correcting the user model is to have the
interface agent request \help" via a bid request from cor-

rection adaptation agents | specialized agents capable
of correcting problems with the user model by adapting
it to improve the interface agent's requirements utility.
The adaptation mechanism is encapsulated in the cor-
rection adaptation agent's correction model. The cor-
rection adaptation agents suggest changes to the ailing
interface agent user model in accordance with a cor-

rection model based the concept of a contractual bid-
ding process. These correction adaptation agents en-
gage in a \bidding process" to recommend changes to
the ailing interface agent. The interface agent serves
as a manager agent, responsible for determining when
a contract is available, announcing the contract to be
�lled, and receiving bids from the bidder agents. The
interface agent evaluates the utility of the bids based
on the correction adaptation agent's ability to improve
the requirements utility function value. The correction
adaptation agent that can improve the interface agent's
requirements utility function value the most \wins" the
contract to correct the user model.

Conclusion

The need for development methodologies for agents is
readily apparent. Our approach to interface agent de-
velopment is to use the Interface agent Development
Environment Architecture to explicitly specify our en-
vironment, to include the target system API, applicable

user interface standards, and human factor concerns,
model the user using a utility theory-based approach
and probability theory, and adapt the user model over
time to accurately reect the user's interaction with
the environment. We do not mean to presuppose that
our approach is the Holy Grail of interface agent devel-
opment. As we begin to implement the approach pre-
sented here, we are sure to uncover unforeseen problems
and pitfalls. However, we believe our approach and the
ASLAN environment will address de�ciencies of current
agent development environments | environment speci-
�cation, adaptivity, and agent knowledge base and rea-
soning mechanisms. We desire to easily and directly in-
corporate user interface standards into ASLAN to pro-
duce compliant intelligent interface agents. In other
words, we can treat user interface standards as simply
an input database to de�ne ASLAN. As a �rst step to-
wards realizing the ASLAN environment tool, ASLAN
will be developed to support the existing core interface
agent architecture, requirements, metrics, and correc-
tion adaptation agents.

We have proposed how we can de�ne the \surface-
level" details of agent development in ASLAN and then
use the concepts of utility theory, requirements and
metrics, as well as a multi-agent system approach to
develop a core interface agent architecture. The use of
utility theory, combined with a knowledge representa-
tion capable of capturing the inherent uncertainty and
dynamics of user modeling, is a non-ad hoc approach
to user intent prediction. Furthermore, the use of ex-

plicit probabilistic causal goals and actions allows us
to represent our approach in any number of graphical
knowledge representations, such as Bayesian networks
or inuence diagrams and, as stated previously, prob-
abilistic approaches have additional advantages. The
keyhole plan recognition approach is valid and has been
used in other related systems (Albrecht et al. 1997;
Waern 1996). We attempt to improve on their work by
providing knowledge acquisition tools (i.e., ASLAN) for
designers to specify what actions to take, when to take
them, why to take an action, and how to take it. This
improved approach also has merit and is being inves-
tigated by other projects (Karagiannidis, Koumpis, &
Stephanidis 1996). We improve on their work by ex-
tending their approach to agent-based environments,
with heterogeneous information sources (e.g., correc-
tion adaptation agents), and provide a mathematically
sound approach to uncertainty. Our initial results indi-
cate this approach works (Banks et al. 1997).

References

Albrecht, D. W.; Zukerman, I.; Nicholson, A. E.; and
Bud, A. 1997. Towards a bayesian model for keyhole
plan recognition in large domains. In Jameson, A.;
Paris, C.; and Tasso, C., eds., Proceedings of the Sixth

International Conference on User Modeling (UM '97),
365{376. SpringerWien New York.

Ambrosini, L.; Cirillo, V.; and Micarelli, A. 1997. A
hybrid architecture for user-adapted information �l-
tering on the World Wide Web. In Jameson, A.; Paris,
C.; and Tasso, C., eds., User Modeling: Proceedings

of the Sixth International Conference, UM97. Vienna,
New York: Springer Wien New York. 59{61. Available
from http://um.org.

Banks, S. B.; Harrington, R. A.; Santos Jr., E.; and
Brown, S. M. 1997. Usability testing of an intelligent
interface agent. In Proceedings of the Sixth Interna-

tional Interfaces Conference (Interfaces 97), 121{123.

Barbuceanu, M., and Fox, M. S. 1996. The ar-
chitecture of an agent building shell. In Woolridge,
M. J.; M�uller, J. P.; and Tambe, M., eds., Intelligent
Agents II: Agent Theories, Architectures, and Lan-

guages, 235{250. Berlin: Springer.

Benyon, D., and Murray, D. 1993. Adaptive sys-
tems: from intelligent tutoring to autonomous agents.
Knowledge-Based Systems 6(4):197{219.

Brown, S. M.; Santos Jr., E.; Banks, S. B.; and Oxley,
M. E. 1998. Using explicit requirements and metrics
for interface agent user model correction. In Proceed-

ings of the Second International Conference on Au-

tonomous Agents (Agents '98). to appear.

Brown, S. M.; Santos Jr., E.; and Banks, S. B. 1998.
Utility theory-based user models for intelligent inter-
face agents. In Proceedings of the Twelfth Canadian

Conference on Arti�cial Intelligence (AI '98). to ap-
pear.

Cohen, P. R.; Cheyer, A. J.; Wang, M.; and Baeg,

S. C. 1994. An open agent architecture. In AAAI

Spring Symposium, 1{8.

Csinger, A., and Poole, D. 1996. User models and per-
ceptual salience: Formal abduction for model recog-
nition and presentation design. In Proceedings of the

Fifth International Conference on User Modeling (UM

'96), 51{58.

Csinger, A.; Booth, K. S.; and Poole, D. 1994. AI
meets authoring: User models for intelligent multime-
dia. Arti�cial Intelligence Review 8:447{468.

Fink, J.; Kobsa, A.; and Nill, A. 1997. Adaptable and
adaptive information access for all users, including the
disabled and the elderly. In Jameson, A.; Paris, C.;
and Tasso, C., eds., User Modeling: Proceedings of the

Sixth International Conference, UM97. Vienna, New
York: Springer Wien New York. 171{173. Available
from http://um.org.

Gavrilova, T., and Voinov, A. 1997. An approach to
mapping of user model to corresponding interface pa-
rameters. In Proceedings of the Embedding User Mod-

els in Intelligent Applications Workshop, 24{29. held
in conjunctionwith the Sixth International Conference
on User Modeling (UM '97).

Gruber, T. R. 1993. A translation approach to
portable ontology speci�cations. Knowledge Acquisi-

tion 5(2):199{220.

Horvitz, E., and Barry, M. 1995. Display of informa-
tion for time-critical decision making. In Proceedings

of the Eleventh Uncertainty in Arti�cial Intelligence,
296{305.

Horvitz, E. 1997. Agents with beliefs: Reections on
Bayesian methods for user modeling. In Jameson, A.;
Paris, C.; and Tasso, C., eds., User Modeling: Pro-

ceedings of the Sixth International Conference, UM97.
Vienna, New York: Springer Wien New York. 441{
442. Available from http://um.org.

IBM. 1997. IBM agent building environ-
ment (ABE): A toolkit for building intelligent
agent applications. World Wide Web Page
http://www.networking.ibm.com/iag/iagsoft.htm.

Jameson, A. 1995. Numeric uncertainty management
in user and student modeling: An overview of systems
and issues. User Modeling and User-Adapted Interac-

tions 5:193{251.

Karagiannidis, C.; Koumpis, A.; and Stephanidis,
C. 1996. Deciding `what', `when', `why', and `how'
to adapt in intelligent multimedia presentation sys-
tems. In Faconti, G., and Rist, T., eds., Proceed-

ings of the Twelvth European Conference on Arti�-

cial Intelligence Workshop "Towards a Standard Ref-

erence Model for Intelligent Multimedia Presentation

Systems". John Wiley & Sons, Ltd.

Kay, J. 1994. Lies, damn lies, and stereo-
types: pragmatic approximations of users. In
User Modeling: Proceedings of the Fourth Interna-

tional Conference, UM94. 175{184. Early draft
of invited keynote presented at UM'94 available at
http://www.cs.su.oz.au/ judy/Research/index.html.

Martin, D. L.; Cheyer, A.; and Lee, G. L. 1996.
Agent development tools for the open agent architec-
ture. In Proceedings of the First International Confer-

ence on the Practical Application of Intelligent Agents

and Multi-Agent Technology, 387{404. London: The
Practical Application Company Ltd.

May�eld, J.; Labrou, Y.; and Finin, T. 1996. Evalua-
tion of kqml as an agent communication language. In
Woolridge, M. J.; M�uller, J. P.; and Tambe, M., eds.,
Intelligent Agents II: Agent Theories, Architectures,

and Languages, 347{360. Berlin: Springer.

Microsoft. 1997. Microsoft agent. Available at
http://www.microsoft.com/intdev/agent/.

Mulgund, S. S., and Zacharias, G. L. 1996. A
situation-driven adaptive pilot/vehicle interface. In
Proceedings of the Third Annual Symposium on Hu-

man Intercation with Complex Systems, 193{198.

Murphy, M., and McTear, M. 1997. Learner mod-
elling for intelligent CALL. In Jameson, A.; Paris, C.;
and Tasso, C., eds., User Modeling: Proceedings of the

Sixth International Conference, UM97. Vienna, New
York: Springer Wien New York. 301{312. Available
from http://um.org.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent

Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufmann.

Rich, E. 1983. Users are individuals: Individualizing
user models. International Journal of Man-Machine

Studies 18:199{214.

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.;
and Lorenson, W. 1991. Object-Orient Modeling and

Design. Prentice Hall.

Sch�afer, R., and Weyrath, T. 1997. Assessing tempo-
rally variable user properties with dynamic Bayesian
networks. In Jameson, A.; Paris, C.; and Tasso,
C., eds., User Modeling: Proceedings of the Sixth In-

ternational Conference, UM97. Vienna, New York:
Springer Wien New York. 377{388. Available from
http://um.org.

Stefanuk, V. L. 1997. Embedding user models in in-
telligent interfaces. In Proceedings of the Embedding

User Models in Intelligent Applications Workshop, 18{
23. held in conjunction with the Sixth International
Conference on User Modeling (UM '97).

Van Veldhuizen, D. A.; Lamont, G. B.; and San-
tos Jr., E. 1998. Comparing computer generated
military actors with speci�c skills. In Proceedings

of the Society of Photo-Optical Instrumentation En-

gineers (SPIE) Aerospace/Defense Sensing and Con-

trols Workshop on Modeling and Simulating Sensory

Response for Real and Virtual Environments. to ap-
pear.

Vassileva, J. 1997. A new view of interactive human-
computer environments. In Jameson, A.; Paris, C.;
and Tasso, C., eds., User Modeling: Proceedings of the

Sixth International Conference, UM97. Vienna, New
York: Springer Wien New York. 433{435. Available
from http://um.org.

Waern, A. 1996. Recognising Human Plans: Issues

for Plan Recognition in Human-Computer Interaction.
Ph.D. Dissertation, Royal Institute of Technology.

